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An unsteady electrohydrodynamic flow of two viscous immiscible liquids in a channel is theoretically
investigated. The flow is caused by an oscillating electric field whose intensity vector has both normal and
tangential components on the interface between the liquids. The velocity profile and flow rates of the liquids
are found for steady-state oscillatory flows. The limiting cases of constant and high-frequency fields are
discussed.
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I. INTRODUCTION

Enormous recent attention to microfluidics �1,2� revived
interest to various phenomena that can be used for actuation
of fluids in microchannels. Actuation by electric fields seems
very promising since it allows integrating pumps without
moving parts into microfluidic devices �2�. Electric fields
cause electro-osmotic and electrohydrodynamic �EHD� flows
due to action of the Coulomb force on uncompensated elec-
tric charges contained in a fluid or on its boundaries �2,3�.
Electro-osmotic flows take place usually in electrolytes, in
which uncompensated charges appear due to chemical inter-
action of the electrolyte with a solid boundary and form elec-
tric double layer. EHD flows occur in leaky dielectrics,
where uncompensated charges are either injected from elec-
trodes or induced by the electric field due inhomogeneity of
the electric conductivity and dielectric permittivity. The com-
parative analysis of the models that are used for theoretical
investigation of electro-osmotic and EHD flows is given by
Saville’s review �3�.

In particular, EHD flow arises when the intensity vector of
an electric field on the interface between two immiscible
liquids has both normal and tangential components and the
ratio of the dielectric permittivities of the liquids does not
equal that of electric conductivities �3,4�. The scope of the
present work is restricted by the study of this particular case
of EHD flows. As an example of such a flow, Melcher and
Taylor considered a steady EHD flow of a liquid layer with
free boundary in their review �4�. In the present work, this
example is generalized in order to make it more applicable to
microfluidics. Since liquids with common interfaces are
more frequently encountered in microfluidic devices than
those with free boundaries, a flow of two immiscible liquid
layers in a channel is considered. Work of microfluidic de-
vices that use integrated EHD pumps implies turning on and
off the electric field or varying its intensity, i.e., forcing tran-
sient processes. Thus, further improvement of such devices
requires the study of transient processes in them, in particu-
lar, investigation of unsteady EHD flows. So an unsteady
EHD flow of the layers caused by a harmonically oscillating
electric field is considered. �Melcher and Taylor’s example is
the limiting case as the viscosity of one of the liquids and the
frequency of oscillations tend to zero.�

The setting of the problem, the system of equations, and
boundary conditions are provided in Sec. II. In Sec. III, the
problem is solved, the solution is written down, and its lim-
iting cases are considered. The obtained results are discussed
in Sec. IV.

II. SETTING OF THE PROBLEM

Consider two immiscible liquids in a channel of the
length L �see Fig. 1�. The cross section of the channel is a
rectangle with width D and height h such that h�D�L
providing that the influence of the lateral walls and of the
flow in the inlet and outlet of the channel on the velocity
profile that is established along the largest part of its length
can be neglected. The interface between the liquids is plane
so that the liquids occupy the layers of heights h1 and h2
�h=h1+h2�. The electric conductivities, dielectric permittivi-
ties, and viscosities of the liquids are �1 ,�1 ,�1 and
�2 ,�2 ,�2, respectively. The electric conductivities of the liq-
uids are so small that the conditions for EHD approximation
�4� is satisfied. The upper and lower walls of the channel are
electrodes to which alternate transversal and longitudinal
voltages

Vt�t� = Vta cos��t�, Vl�t� = Vla cos��t� �1�

are applied �t is the time and � is the angular frequency�. The
transversal voltage provides the normal component of the
electric intensity vector, which induces uncompensated
charges on the interface; and the longitudinal voltage creates
the tangential component, which acts on the charges and ac-
tuates the liquids.

A. Equations

Provided that the liquids remain electroneutral in the bulk
at all times �and that the uncompensated charge is localized
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FIG. 1. Setting of the problem.
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in the infinitely thin interface�, Maxwell’s equations for the
electric field in the EHD approximation, the electric charge
conservation law, and constitutive relations take the form �4�

�� · D� = 0, �� � E� = 0� , �2�

�� · j� = 0, �3�

D� = �E� , j� = �E� . �4�

The equations for the flow include the momentum conserva-
tion law and the continuity equation for incompressible flu-
ids �cf. �4��,

�
�v�
�t

+ �v� · �� v� = − �� p + �� · 	̂v + �� · 	̂e, �5�

�� · v� = 0, �6�

where 	̂v and 	̂e are the viscous and Maxwell’s stress tensors

	̂v = 2���� v��S, �7�

	̂e =
1

4

D� E� −

1

8

D� · E� . �8�

Using Eqs. �2�, �4�, and �6�, and constancy of � and �, one
obtains the Navier-Stokes equation for the flows within each
layer,

�
�v�
�t

+ �v� · �� v� = − �� p + ��v� . �9�

Maxwell’s equations �2� can be replaced with Laplace’s
equation for the electric potential � �E� =−�� ��,

�� = 0, �10�

with the electric charge conservation law �3� being identi-
cally satisfied. Here, E� and D� are the intensity and induction
of the electric field; j� is the electric current density; v� and p
are the velocity and pressure; �=�1, �=�1, �=�1, and
�=�2, �=�2, �=�2 within the corresponding layer; �� and �

denote the nabla operator and Laplacian; T̂S denotes the sym-

metric part of tensor T̂; and a�b� , a� ·b� , and a� �b� denote the
dyadic, scalar, and vector products of vectors a� and b� . Here
and in what follows, all the formulas are written down for
the Gaussian system of units.

Choose a Cartesian coordinate system x ,y ,z whose axes
are directed along its length, width, and height �see Fig. 1,
respectively. Then

Ex = −
��

�x
, Ey = 0, Ez = −

��

�z
,

�2�

�x2 +
�2�

�z2 = 0.

�11�

�It is implied that the electric field is plane and that
Ex=−Vl�t� /L on the surface of the upper electrode.� Assum-
ing that the solution of Eqs. �9� and �6� is a plane flow with
rectilinear streamlines, one obtains

v� = vx�z,t�i�, p = G�t�x + p0, �12�

�
�vx

�t
= − G�t� + �

�2vx

�z2 , �13�

where i� is the unit vector directed along the x axis; p0= p01,
G�t�=G1�t� for −h1z0; and p0= p02, G�t�=G2�t� for
0zh2. Note that the solution of the linear equation �13�
forms an exact solution of the Navier-Stokes equation �9�
that is nonlinear in the general case. This is a property of
flows of incompressible fluids with rectilinear streamlines,
for which the nonlinear terms vanish.

B. Boundary conditions

The boundary conditions include �4� the continuity condi-
tions for the tangential component of the electric intensity,

lim
z→+0

��

�x
= lim

z→−0

��

�x
, lim

z→h2−0

��

�x
=

Vl�t�
L

, �14�

the condition for the jump of the normal component of the
electric induction,

− �2 lim
z→+0

��

�z
+ �1 lim

z→−0

��

�z
= 4
qs�t� , �15�

where qs�t� is the charge surface density, the condition for
the jump of the normal component of the electric current
density,

− �2 lim
z→+0

��

�z
+ �1 lim

z→−0

��

�z
= −

�qs

�t
, �16�

no-slip conditions on the walls of the channel,

vx�− h1,t� = 0, vx�h2,t� = 0, �17�

no-slip conditions on the interface between the liquids,

lim
z→−0

vx�z,t� = lim
z→+0

vx�z,t� , �18�

and the conditions for the jumps of the normal and tangential
components of the stress vector,

− lim
z→+0

p +
1

8

�2 lim

z→+0
�Ez

2 − Ex
2�

= − lim
z→−0

p +
1

8

�1 lim

z→−0
�Ez

2 − Ex
2� , �19�

�2 lim
z→+0

�vx

�z
+

1

4

�2 lim

z→+0
�ExEz�

= �1 lim
z→−0

�vx

�z
+

1

4

�1 lim

z→−0
�ExEz� . �20�

The boundary condition �20� can be satisfied for a plane
flow with rectilinear streamlines only if

G1�t� = G2�t� . �21�
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The pressure gradient G�t�=G1�t�=G2�t� is determined by
the hydrodynamic resistance of the external channels through
which the liquids are conveyed to and from the considered
channel and is regarded for this problem as given in the form

G�t� = G0 + R�G̃0e2i�t� , �22�

where G0 and G̃0 are some given real and complex numbers,
respectively. Here and in what follows, i is the imaginary
unit, R denotes the real part of a complex expression, and
complex quantities are marked with tilde.

With the use of Eqs. �14�, �15�, and �21�, the boundary
conditions �19� and �20� can be written in the form

p02 − p01 =
1

8

�2 lim

z→+0
�Ez

2 − Ex
2� −

1

8

�1 lim

z→−0
�Ez

2 − Ex
2�

= fsz�t� , �23�

�1 lim
z→−0

�vx

�z
− �2 lim

z→+0

�vx

�z
= qs�t�lim

z→0
Ex = fsx�t� , �24�

where fsx�t� and fsz�t� may be regarded as the surface densi-
ties of the tangential and normal components of the Coulomb
force. Since the solutions for steady-state oscillatory flows
are to be sought for, there is no necessity to use initial con-
ditions.

III. SOLUTION

A. Electric field and charge surface densities

Equation �11� with boundary conditions �14�–�16� for the
electric field is independent and can be solved separately.
The solution is as follows:

� = �0 − Exx − Ezz , �25�

Ex = −
Vl�t�

L
, �26�

Ez = �
− �1Vt�t� + 4
qs�t�h1

�2h1 + �1h2
if − h1 � z  0

− �2Vt�t� − 4
qs�t�h2

�2h1 + �1h2
if 0  z � h2, � �27�

qs�t� = R�q̃se
i�t� , �28�

q̃s =
Vla

4


�2�1 − �1�2

�2h1 + �1h2

1 − i
�

�e

1 +
�2

�e
2

, �29�

�e = 4

�2h1 + �1h2

�2h1 + �1h2
, �30�

and, in fact, presents the steady-state response of Maxwell’s
capacitor to an applied harmonically oscillating voltage �see
�5�, Sec. 7.9�. Using Eqs. �26�–�29�, one obtains

fsz�t� =
�2 − �1

8


Vl
2�t�
L2 +

�2
3 − �1

3

8


Vt
2�t�

��2h1 + �1h2�2

+
�2

2h2 + �1
2h1

��2h1 + �1h2�2qs�t�Vt�t� + 2

�2h2

2 + �1h1
2

��2h1 + �1h2�2qs
2�t� ,

�31�

fsx�t� = fs0x + R� f̃sxe
2i�t� , �32�

fs0x =
VlaVla

8
L

�2�1 − �1�2

�2h1 + �1h2
�1 +

�2

�e
2�−1

, �33�

f̃sx =
VlaVla

8
L

�2�1 − �1�2

�2h1 + �1h2

1 − i
�

�e

1 +
�2

�e
2

. �34�

The surface densities of the charge and of the tangential
component of the Coulomb force can be written in the form

qs�t� =
Vla

4


�2�1 − �1�2

�2h1 + �1h2

cos��t − arctan
�

�e
�

	1 +
�2

�e
2

, �35�

fsx�t� =
VlaVla

4
L

�2�1 − �1�2

�2h1 + �1h2
�1 +

�2

�e
2�−1/2

�cos��t − arctan
�

�e
�cos �t . �36�

B. Pressure and velocity

Substituting Eqs. �32� and �33� into Eq. �24� and solving
Eq. �13� with the boundary conditions �17�, �18�, and �24�,
one obtains the following solution for steady-state oscillatory
flows:

p�x,z,t� = G0x + R�G̃e2i�t�x + p0�z,t� , �37�

vx�z,t� = v0x�z� + R�ṽx�z�e2i�t� , �38�

where

p0�z,t� = 
p01 if − h1 � z  0

p01 + fsz�t� if 0  z � h2,
� �39�

v0x�z� = �
h1 + z

h1
�vs0x +

G0zh1

2�1
� if − h1 � z  0

h2 − z

h2
�vs0x −

G0zh2

2�2
� if 0 � z � h2, �

�40�
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ṽx�z� =�ṽsx

sinh
h1 + z

�̃1

sinh
h1

�̃1

+ 2 sinh
z

2�̃1

sinh
h1 + z

2�̃1

cosh
h1

2�̃1

�̃1
2

�1
G̃ if − h1 � z  0

ṽsx

sinh
h2 − z

�̃2

sinh
h2

�̃2

− 2 sinh
z

2�̃2

sinh
h2 − z

2�̃2

cosh
h2

2�̃2

�̃2
2

�2
G̃ if 0 � z � h2, � �41�

vs0x = v0x�0� =

fs0x −
h1G0

2
−

h2G0

2

�1

h1
+

�2

h2

, �42�

ṽsx = ṽx�0� =

f̃sx − tanh
h1

2�̃1

�̃1G̃ − tanh
h2

2�̃2

�̃2G̃

�1

�̃1

h1
tanh

h1

�̃1

+
�2

�̃2

h2
tanh

h2

�̃2

, �43�

�̃1 =
	2�1

1 + i
=

�1 − i��1

	2
= e−�
/4�i�1, �1 =	 �1

2�1�
,

�44�

�̃2 =
	2�2

1 + i
=

�1 − i��2

	2
= e−�
/4�i�2, �2 =	 �2

2�2�
.

�45�

Here, p01 is the pressure at the point x=0, z=−h1 regarded as
given for this problem.

C. Flow rates of the liquids

Integrating the velocity over the cross sections of the lay-
ers, one obtains the flow rates of the liquids,

Q1�t� = Q01 + R�Q̃1e2i�t� , �46�

Q2�t� = Q02 + R�Q̃2e2i�t� , �47�

where

Q01 =
h1Dvs0x

2
−

h1
3DG0

12�1
, �48�

Q02 =
h2Dvs0x

2
−

h2
3DG0

12�2
, �49�

Q̃1 = �̃1 tanh
h1

2�̃1

Dṽsx + �2�̃1 tanh
h1

2�̃1

− h1� �̃1
2

�1
DG̃ ,

�50�

Q̃2 = �̃2 tanh
h2

2�̃2

Dṽsx + �2�̃2 tanh
h2

2�̃2

− h2� �̃2
2

�2
DG̃ .

�51�

D. Limiting cases

The case �→0 corresponds to a steady flow in a constant
electric field. The electric potential and the intensity vector
for this case are determined by Eqs. �25�–�27� in which the
surface charge density takes the form

qs =
Vla

4


�2�1 − �1�2

�2h1 + �1h2
. �52�

The surface density of the tangential component of the Cou-
lomb force, velocity, and flow rates for the case �→0 take
the form

fsx =
VlaVla

4
L

�2�1 − �1�2

�2h1 + �1h2
, �53�

vx�z� = �
h1 + z

h1
�vsx +

G0zh1

�1
� if − h1 � z  0

h2 − z

h2
�vsx −

G0zh2

�2
� if 0 � z � h2, � �54�

vsx =
fsx − h1G0 − h2G0

�1

h1
+

�2

h2

, �55�

Q1 = h1Dvsx −
h1

3DG0

6�1
, �56�
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Q2 = h2Dvsx −
h2

3DG0

6�2
. �57�

The pressure gradient G�t� is regarded as dependent of the
frequency � and is implied to tend to 2G0 as �→0 �i.e.,

G̃→G0 as �→0�. The one-layer EHD flow, which is con-
sidered by Melcher and Taylor �4�, coincides with the flow in
the lower layer with Q2=0 for the limiting case �2→0,
�2→0.

For �→�, the following asymptotic relations take place:

q̃s � e−�
/2�iVla

�e

�2�1 − �1�2

�2h1 + �1h2

�e

�
as � → � , �58�

fs0x �
VlaVla

8
L

�2�1 − �1�2

�2h1 + �1h2

�e
2

�2 as � → � , �59�

f̃sx � e−�
/2�iVlaVla

8
L

�2�1 − �1�2

�2h1 + �1h2

�e

�
as � → � , �60�

vs0x �
VlaVla

8
L

�2�1 − �1�2

�2h1 + �1h2
��1

h1
+

�2

h2
�−1�e

2

�2 as � → � ,

�61�

ṽsx � e−�3
/4�iVlaVla

8
L

�2�1 − �1�2

�2h1 + �1h2

���1

h1
	�e

�1
+

�2

h2
	�e

�2
�−1�e

3/2

�3/2 as � → � ,

�62�

where

�1 =
�1

2�1h1
2 =

��1
2

h1
2 , �2 =

�2

2�2h2
2 =

��2
2

h2
2 . �63�

The asymptotic relations for ṽsx and vs0x are written down
only for the case G�t�=0 since the dependence of the pres-
sure gradient G�t� on the frequency � is determined by the
factors external with respect to this problem.

IV. DISCUSSION

A harmonically oscillating electric field causes oscillatory
EHD flow with double frequency in two immiscible liquid
layers with a common interface. The normal component of
the electric field causes an electric current through the inter-
face. If the ratio of the dielectric permittivities of the liquids
does not equal that of electric conductivities, the normal
component of the electric current density experiences a jump
on the interface, i.e., the ions of conductivity are accumu-
lated on it. The tangential component of the electric field
causes the motion of the accumulated ions under the action
of the Coulomb force. The motion of the ions actuates the
interface and the latter drags the liquids due to viscosity.

The sequences of graphs in Figs. 2�a�–2�c� show the evo-
lution of the velocity profile for various cases during the
period of oscillations. �Profiles for the beginning of the pe-
riod of oscillations, those for the instants when vx�0, t�
reaches maximal and minimal values, and two more interme-
diate profiles are included into the sequences; more detailed
evolution is shown by the movies in the auxiliary material
�6�.� For all the cases, G�t�=0. The dimensionless quantities
are determined as follows:

v∗x-0.5 10.5

z∗

-1

1 t∗ = 0

v∗x-0.5 10.5

z∗

-1

1 t∗ = 0.2

v∗x-0.5 10.5

z∗

-1

1 t∗ = 0.4

v∗x-0.5 10.5

z∗

-1

1 t∗ = 0.7

v∗x-0.5 10.5

z∗

-1

1 t∗ = 0.9

v∗x1 2

z∗

-1

1 t∗ = 0

v∗x1 2

z∗

-1

1 t∗ = 0.3

v∗x1 2

z∗

-1

1 t∗ = 0.5

v∗x1 2

z∗

-1

1 t∗ = 0.6

v∗x1 2

z∗

-1

1 t∗ = 0.8

v∗x-1 1

z∗

-1

1 t∗ = 0

v∗x-1 1

z∗

-1

1 t∗ = 0.2

v∗x-1 1

z∗

-1

1 t∗ = 0.4

v∗x-1 1

z∗

-1

1 t∗ = 0.7

v∗x-1 1

z∗

-1

1 t∗ = 0.9

(b)

(a)

(c)

FIG. 2. Evolution of the velocity profile for �2 /�1=1, h2 /h1=1, � /�e=0.1, �a� �1 /h1=0.1, �2 /h2=0.5; �b� �1 /h1=1, �2 /h2=5,
�c��1 /h1=0.05, �2 /h2=0.1.
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z� = 
z/h1 if − h1 � z  0,

z/h2 if 0 � z � − h2,
� t� =

�t



, vx

� =
vx

ṽsx
,

�64�

providing the dimensionless period of oscillations equal to
unity, −1�z��1, and −1�vx

��2.
The parameters �1 and �2 have the length dimension and

determine the influence of inertia as compared with that of
viscosity. If �1 /h1�1 and �2 /h2�1, the quasisteady ap-
proximation, within which the influence of inertia is ne-
glected, may be used �see Fig. 2�b��; otherwise, the influence
of inertia should be taken into account. For the case
�1 /h1�1, �2 /h2�1, �1 and �2 are the characteristic thick-
nesses of the thin layers adjacent to the interface between the
liquids within which the velocity has a noticeable oscillating
component �the oscillating component of the velocity van-
ishes outside these thin layers �see Fig. 2�c���. If ���e, the
maximal value of fsx�t� decreases with an increase in the
frequency as �−1 �see Eqs. �59� and �60��, i.e., the EHD flow
vanishes when the frequency of the applied voltages is suf-
ficiently large.

The investigated phenomenon can be used for pumping in
microfluidic devices. A pumped liquid and a liquid that does
not mix with it �working liquid� are conveyed to the inlet of
a channel with electrodes �similar to that in Fig. 1�. After
passing the outlet, the working liquid is directed through a
special channel to the inlet, and the pumped liquid is con-
veyed to a necessary destination �hydraulic circuit or net-
work�. The obtained solution can be applied to the analysis
of processes in such systems including transient processes, in

which the voltages are turned on and off. Indeed, since the
equations and boundary conditions are linear, the velocity
profile for any transient process can be represented in the
form of a Fourier integral of the velocity profile for a har-
monically oscillating flow.

The electrically charged interface between the liquids is
regarded as infinitely thin within the used model. In fact, it is
a layer of some finite thickness due to the thermal motion of
the ions and molecules. The violation of the bulk electroneu-
trality within this charged layer does not influence the ob-
tained results if the minimal dimension of the channel is
much greater than its thickness, i.e., if the sizes of micro-
channel cross sections are on the order of micrometer or
more. However, the results may change dramatically if this
condition is violated. Thus, the miniaturization of microflu-
idic devices up to nanometer scales requires the further de-
velopment of the model in order to account for the finite
thickness of the nonelectroneutral interface.
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